@sliet.ac.in
Research Scholar
Sant Longowal Institute of Engineering and Technology
Food Science, Agricultural and Biological Sciences, Biochemistry
Scopus Publications
Scholar Citations
Scholar h-index
Scholar i10-index
Alka Joshi, Prajya Arya, Neeraj, Shruti Sethi, Bindvi Arora, Anamika Thakur, and Pradyuman Kumar
CRC Press
Megha Kumari, Prajya Arya, Sunil Kumar Khatkar, and Pradyuman Kumar
Elsevier BV
Prajya Arya and Pradyuman Kumar
Elsevier BV
Prajya Arya and Pradyuman Kumar
CRC Press
Prajya Arya and Pradyuman Kumar
Springer Science and Business Media LLC
Prajya Arya, Mohona Munshi, and Pradyuman Kumar
Elsevier BV
Prajya Arya and Pradyuman Kumar
MDPI AG
Fenugreek seeds are a rich source of bioactive compounds, such as diosgenin, which is one of the most crucial steroidal sapogenins emerging in the field with its spectacular health benefits. Plant-based diosgenin is bitter in taste and has remarkably low consumption levels, making it unable to fulfil the role of improving health benefits. Diosgenin is spray dried to mask bitterness and astringent flavors with two different wall materials, such as maltodextrin (MD) and whey protein concentrate (WPC), separately. The spray-drying condition of the selected optimization process was inlet air temperature (IAT 150–170 °C), feed flow rate (FFR 300–500 mL/h), and carrier agent concentration (CAC 10–20%). The optimization of the process variable was conducted for producing optimized encapsulated diosgenin powder (EDP) with both MD and WPC. The selected parameters, such as yield, encapsulation efficiency, moisture content, antioxidant activity, hygroscopicity, and solubility, are investigated in this current work. Based on the experimental results, the significant R2 values depict the model fitting to the responses. EDP revealed an optimization condition at 170 °C IAT, 500 mL/h FFR, and 20% CAC for MD and WPC. The highest responses were observed with WPC-EDP, such as yield at 82.25%, encapsulation efficiency at 88.60%, antioxidant activity at 53.95%, and hygroscopicity at 12.64%. MD-EDP revealed higher solubility at 96.64% and moisture content at 2.58%. EDP was studied using micrographs and diffractograms for the optimized samples, which revealed a smooth and dented surface with an amorphous nature for MD-EDP and WPC-EDP, respectively. EDP exhibited acceptable powder properties with regard to fulfilling the set purpose. EDP can be a better potential ingredient in different food matrices to act as a delivery vehicle for various health aliments.
Prajya Arya and Pradyuman Kumar
Elsevier BV
Prajya Arya and Pradyuman Kumar
Hindawi Limited
The consumption and composition of food in daily life predict our health in long run. The relation of diabetes to sweets is quite popular. Diabetes hampers the glucose and insulin regulation in the human body by damaging pancreatic β cells. Diabetes has a strong potential towards altering cellular mechanisms of organs causing unlawful performance. Diabetes alters pathways like TLR4, AChE, NF-ĸB, LPL, and PPAR at different sites that affect the normal cellular machinery and cause damage to the local tissue and organ. The long-lasting effect of diabetes was observed in vascular, cardia, nervous, skeletal, reproductive, hepatic, ocular, and renal systems. The increasing awareness of diabetes and its concern has awakened the common people more enthusiastically. Due to rising harm from diabetes, scientific researchers tend to have more eyes toward it. While searching for diabetes solutions, fenugreek diosgenin could pop up with some positive effects in curing the same. Diosgenin helps to lower the scathe of diabetes by modifying cellular pathways in favor of healthy bodily functions. Diosgenin altered the pathways for renewal of pancreatic β cells for better insulin secretion, initiate GLUT4, enhanced DHEA, modify ER-α-mediated PI3K/Akt pathways. Diosgenin can be an appropriate insult for diabetes in a much evolving way for a healthy lifestyle. PRACTICAL APPLICATIONS: Diabetes is one of the most death causing diseases in the medical world. Regrettably the cure of diabetes is yet to be found. Various scientific team working on the same to look after the most appropriate way for diabetes treatment. There is enormous growth of nutraceutical in the market claiming for cure of different metabolic disorders. Among various bioactive compound fenugreek's diosgenin could took a leap over other in curing and preventing the damage caused by diabetes to different organs. The role of diosgenin in curing various metabolic disorders is quite popular from some time. This article also emphasizes over beneficiary effect of diosgenin in curing the damages caused by diabetes by altering cellular metabolism processes. Hence diosgenin could be a better way for researchers to develop a method for diabetes treatment.
Prajya Arya and Pradyuman Kumar
Elsevier BV
Prajya Arya, Neha Kumari, Sajad Ahmad Wani, and Pradyuman Kumar
Elsevier
Prajya Arya and Pradyuman Kumar
CRC Press
Prajya Arya and Pradyuman Kumar
CRC Press
Mohona Munshi, Prajya Arya, and Pradyuman Kumar
CRC Press
Prajya Arya and Pradyuman Kumar
Hindawi Limited
To endure respective research for cancer via common food ingredients has become more prominent with preferably minuscule toxicity. Spices are emerging as a new source of bioactive compounds which have the potential to cure cancer. Fenugreek is rich in diosgenin that has curative and preventive potency toward various cancers. Cancer is invading various cellular mechanisms by altering cellular receptors. Cancer falsifies healthy cells by altered cell receptors like p38, p53, mTOR, Akt, and PARP. Distinct stages of cancer development are triggered by various cellular mechanisms. Diosgenin helps in suppressing cancer mechanisms and induces programmed cell death. Diosgenin brought changes in treatment line of lung, breast, prostate, liver, and colon cancer. Apoptosis changes cytoplasmic different caspase pathways and triggers selected sequence for cancer cell line death. Cell death comprised of series of events carried out by metalloprotease caspase. The complex relationship among cancer, caspase, cell death, and cellular receptors is reviewed in this article in respect of diosgenin. The utilization of diosgenin in creating a bar for cancer, its triggering sites, and various ways to cause apoptosis of abnormal cells. This article focused on diosgenin, its role in the prevention of different cancer and cellular apoptosis throughout different pathways involved in complex interaction of bioactive compound-cellular mechanism cancer. PRACTICAL APPLICATIONS: The concept of curing diseases from daily routine food is quite old. Fenugreek is an excellent source of various bioactive compounds especially diosgenin. Diosgenin is steroidal sapogenin that cures various health issues including cancers. Cancer is one of the most life-threating disease which can affect any cell, tissue, and organ in living system. Diosgenin is proved to be beneficial in terms curing cancer of various types but majorly include lung, liver, colon breast, and prostate. Cancer cure with diosgenin is providing a new base to the pharmaceutical and medical researchers to commence new and more specific journey of diosgenin. Diosgenin could alter cellular pathways that modify cell mechanism in way toward treating cancer. Cell mechanism mainly affected by the interaction of cell signals and cell different receptors that cause triggered cell death. This review article focused over various cancer and diosgenin effect in controlling different cellular pathways which include cellular signaling and cell death mechanism.
Prajya Arya and Pradyuman Kumar
Elsevier BV
Mohona Munshi, Prajya Arya, and Pradyuman Kumar
Japan Oil Chemists' Society
Fenugreek (Trigonella foenum-graecum) a native to Southern Europe, Mediterranean region and Western Asia has been used as a spice all over the world to increase the sensory quality to the food. It is also known for its medicinal properties such as anti-diabetic, anti-carcinogenic, hypocholesterolemic and immunological activities and can also be used as a food stabilizer and emulsifying agent. The ash, protein, moisture and fiber content of defatted fenugreek seed powder obtained were 9%, 23.04%, 3.8%, 25.47% respectively. So, this study is systematically intended to determine the fatty acid composition, to be best among the different solvents used are the ethanol, petroleum ether, acetone and hexane for the extraction of the fenugreek seed oil and to analyze its susceptibility to oxidation. This study was carried out to investigate and examine the results such as acid value, peroxide value, saponification value, iodine value and the physical properties such as the color value and the refractive index of the seed oil. The results stipulate that the oil extracted using the solvent hexane had better quality and yield. Linoleic acid (41.97%) followed by alpha-linolenic acid (29.33%) and cis-9 oleic acid (12.95%) was found as the primary fatty acids present in the oil extracted using hexane. Along with these fatty acids, the PUFA content of hexane oil (71.30%) was also observed to be in a good range. So, on comparing these results with codex standards, it revealed that it can be considered as edible oil with further purifications.